209.1 - X-Ray Diffraction (powder and solid forms) SRMs 656, 676a, 674b, 1878a and 1879a consist of high phase purity materials for use in the quantitative analysis of samples by the internal standard method. SRM 656 consists of 2 silicon nitride powders, one high in a, the other high in b. SRMs 640d, 660b, 675, and 1976a consist of materials with select crystallographic and microstructure properties used in the evaluation of diffraction equipment for the following variables; 1) d-spacing or line position, 2) line or instrument intensity, and 3) instrumental or sample contributions to happe of reflection profiles. SRM 1976a, a sintered alumina plate, is also certified with respect to lattice parameters as well as 13 relative intensity values from 22° to 155° 2q (Cu Ka). SRM 1990 is certified for lattice parameter. SRM 1994 is certified for miss orientation of the crystal axis relative to the surface normal. Technical Contact: james.cline@nist.gov href="mailto:james.gov">james.gov Cont PLEASE NOTE: The tables are presented to facilitate comparisons among a family of materials to help customers select the best SRM for their needs. For specific values and uncertainties, the certificate is the only official | SRM | 640d | 656 | 660b | 674b | 675 | 676a | 1878a | 1879a | 1976a | 1990 | 1994 | 1995 | |------------------------|---|--|---|---|---|--|--|-------------------------------------|---|--|---|---| | Description Unit Size | Silicon
Powder
Line
Position
+ Line
Shape
Std for
Powder
Dif
(7.5 g) | Silicon
Nitride
Powders
for
Quantitative
Analysis
(2 x 10 g) | Line
Position
and Line
Shape,
Std for
Powder
Diffraction
(6 g) | X-Ray Powder
Diffraction,
Intensity Set
Quant Analysis
(10.00 g (powder)) | Line
Position,
Mica
(XRD)
(7.5 g) | Alumina
Powder for
Quantitative
Analysis by
X-ray
Diffraction
(20 g) | Respirable
Alpha
Quartz
(5 g) | Respirable
Cristobalite
(5 g) | Instrument
Response
Std for
X-Ray
Powder
Diffraction
(1 disc) | Lattice
Parameter/Single,
Crystal (Ruby
Spheres)
(3 spheres) | Standard
Silicon Single
Crystal Wafer
for Crystalline
Orientation
(100-mm wafer) | Standard
Sapphire
Single
Crystal Wafer
for
Crystalline
Orientation
(50-mm wafer) | | XRD
Application | Line
Position
Line
Shape | Quantitative
Analysis | Line Position
Line Shape | Quantitative Analysis | Line
Position -
Low 20 | Quantitative
Analysis | Quantitative
Analysis | Quantitative
Analysis | Instrument
Response | Quantitative Analysis | Crystalline
Orientation | Crystalline
Orientation | Values in parentheses are not certified but are provided as reference values or are given for information only. ## 209.1 - X-Ray Diffraction (powder and solid forms) SRMs 656, 676a, 674b, 1878a and 1879a consist of high phase purity materials for use in the quantitative analysis of samples by the internal standard method. SRM 656 consists of 2 silicon nitride powders, one high in a, the other high in b. SRMs 640d, 660b, 675, and 1976a consist of materials with select crystallographic and microstructure properties used in the evaluation of diffraction equipment for the following variables; 1) d-spacing or line position, 2) line or instrument intensity, and 3) instrumental or sample contributions to shape of reflection profiles. SRM 1976a, a sintered alumina plate, is also certified with respect to lattice parameters as well as 13 relative intensity values from 22° to 155° 2q (Cu Ka). SRM 1990 is certified for lattice parameter. SRM 1994 is certified for miss orientation of the crystal axis relative to the surface normal. Technical Contact: james.cline@nist.gov Technical Contact: james.cline@nist.gov To SRM 1994 PLEASE NOTE: The tables are presented to facilitate comparisons among a family of materials to help customers select the best SRM for their needs. For specific values and uncertainties, the certificate is the only official source. 2000 Calibration Standard for High-Resolution X-Ray Diffraction (1 block) Line Position Values in parentheses are not certified but are provided as reference values or are given for information only.